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Abstract

Recent advances in single-photon detection technology led to the development of single-
photon light detection and ranging (LIDAR) systems. With the ability to accurately count the
detected photons, these systems allow for a more precise decoding of these signals to obtain
reflectivity images and depth maps. With this capabilities, these systems can be pushed much
further than other LIDAR systems with respect to low photon counts, but when these photon
counts get extremely low more elaborate techniques are required to accurately decode these
signals. In this work, convex optimization decoding methods for single-band and multi-spectral
single-photon LIDAR systems are presented by proposing improvements on the state-of-the-
art in single-photon LIDAR decoding. This is done by using physically accurate Poissonian
measurement models for single-photon detections and by imposing low-rank priors to correlate
different bands. The usage of compressive sampling is also explored as a way to optimize the
acquisition strategy of scanning LIDAR systems.

Research is what I’m doing when I don’t know what I’m doing . . .

Werner von Braun
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Chapter 1

Introduction

1.1 LIDAR Technology

Light Detection and Ranging (LIDAR) systems consist of imaging equipment capable of

capturing reflectivity and depth information simultaneously. It does so by emitting streams

of photons from laser sources for each pixel and building a histogram of the reflected light

pulse over time. The intensity of the observed response is proportional to the reflectivity of the

object being imaged at that point, and the depth is associated with the delay of the impulse

response [1]. LIDAR systems can work by scanning the image pixel by pixel or by ceasuring all

the pixels simultaneously. In this work, the considered LIDAR systems works by scanning the

pixels in the image one at a time.

Advances in single-photon detection technology using single-photon avalanche diodes (SPAD)

enabled single-photon LIDAR systems with enhanced photon timing and thus ranging capabil-

ity, which allows 3D scenes analysis with shorter acquisition times and lower power consumption

(e.g. for eye-safety purpose). These single-photon LIDAR systems usuallt have higher resolu-

tion and require a smaller light flux than other LIDAR systems. However, the consideration of

such systems makes the decoding of LIDAR signals particularly challenging when the number

of detected photons in each pixel is very low. Decoding a LIDAR signal consists of extracting

depth and reflectivity information for each of the imaged pixels. A diagram of a single-photon

LIDAR system can be seen in Fig. 1.1.

The applications of LIDAR systems are vast. Its use is widespread in fields such as geo-

graphical information systems (GIS) [2,3], underwater imaging [4,5] and forest monitoring [6–8],

enabling fast and accurate surveying of large areas. More recently, LIDAR has been adopted

by the autonomous driving industry as a complement to the collections of cameras and sensors

1



Chapter 1: Introduction 2

Figure 1.1: Example of a LIDAR imaging system. The laser pulses are emitted and the impulse
response is observed at each pixel.

present in modern autonomous vehicles [9].

When decoding single-photon LIDAR data, the standard assumption of additive Gaussian

noise that is commonly used in imaging problems is no longer adequate. The discrete nature

of the photon detections when building the detection histograms for each pixel is much more

accurately modelled by Poissonian statistics.

Some LIDAR systems, named multi-spectral LIDAR, are able to work with different light

wavelengths. By repeating the acquisition process using a range of light wavelengths, this

system is able to obtain reflectivity information for each wavelength as well as more reliable

depth information. The acquisition time for multi-spectral LIDAR systems is not necessarily

longer than that of single band LIDAR since it can be equipped with multiple photon detectors

that acquire data on all bands simultaneously. The multi-spectral response intensity information

may be used, for example, for classifying the observed material at a given pixel, which is very

useful in applications such as remote sensing.

1.2 Problem Definition

The first objective of this work is to propose convex optimization methods for decoding

single- and multi-spectral single-photon LIDAR data as accurately as possible for cases where

the photon per pixel count is extremely low. Convex optimization methods provide a good
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balance between computation speeds and flexibility for solving different types of problems.

They are fast and reliable ways of dealing with some problems and are well adapted for dealing

with large images.

The second objective of this work is to explore the impact of pixel subsampling and compres-

sive sensing reconstruction to the aforementioned LIDAR systems. Given that the considered

LIDAR system consists of a single laser emitter/receptor that scans the image, and that we

have full control over its behaviour, the idea of sampling fewer pixels with higher quality (i.e.

longer acquisition time) is explored in this work.

1.3 Outline

Chapter 2 contains a review of the state-of-the-art methods in single-photon multi-spectral

LIDAR decoding technology, relevant convex optimization methods, and a quick review of

compressive sensing theory. Chapter 3 details the proposed method for decoding single-spectral

LIDAR. Chapter 4 expands the approach proposed in Chapter 3 to account for multi-specral

LIDAR. Chapter 5 discusses experimental results that evaluate the algorithms proposed in

chapters 3 and 4. Chapter 6 concludes this work by summarising the main findings from the

previous chapters and possible improvements in future work.



Chapter 2

Background

This chapter aims to discuss the state-of-the-art in the area of single and multi-spectral

LIDAR decoding, as well as reviewing the relevant theory in convex optimization algorithms

and compressive sensing that will be essential to the following chapters.

2.1 Single-photon LIDAR

LIDAR systems work by emitting a light pulse (from a laser or LED) in a given direction

(pixel) and building a histogram of the response over time. In case there is an object in the

range and field of view of the LIDAR system, the measured response should have a peak which

depends on the position of the imaged object, on its reflectivity for the light’s wavelength and

on the angle between the emitted laser pulse and the object’s surface at that point.

LIDAR decoding uses calibration data which has been obtained in a controlled environment.

This data is obtained by imaging an object with a known reflectivity and at a known position

relative to the LIDAR system. This calibration data contains the shape and intensity of the

impulse response for that material, and can be used to calculate the depth and reflectivity in

newly acquired data by comparing the magnitude and the delay of the impulse responses. It

is assumed that the shape of the impulse response does not vary with the depth of the imaged

surface. Another assumption that is made here is that the angle between the surface and the

light beam only affects the intensity of the response and not its shape, which is an adequate

assumption in case the beam of light is narrow.

In a real world environment, it is common to have other sources of light present in the scene

other than the LIDAR laser emitter. These other sources of light can be detected by LIDAR

systems and are called baseline response. The baseline make the decoding of the signal harder,

given that baseline photon counts contain no information about either reflectivity or depth.

4



5 2.1 Single-photon LIDAR

The baseline image is very similar to a regular passive photograph, given that it is measuring

the light present in the scene that does not come from the light source in the LIDAR system.

In the case of translucent objects, edges and occlusions it is possible that the observed

response at a given pixel contains impulse response from objects with different reflectivities

and depths. Given that in most cases the response comes only from a single surface given the

divergence of the laser beam is small, this phenomenon is ignored by many decoding algorithms.
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Figure 2.1: Example of how the data is modelled for an example pixel whose response is
composed of a main impulse response, a weaker secondary response and baseline.

Figure 2.1 illustrates the decomposition of the observed photon counts. Figure 2.1a contains

the impulse response that was obtained during the calibration process in a controlled environ-

ment. Figure 2.1b illustrates a possible composition for the response of a given pixel: main

impulse response from the object covering most of the area of the pixel, secondary response from
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an object covering a small area of the pixel, and baseline response constant over time. These

three components are combined into a single expectation of number of observed photons, which

is depicted in Fig. 2.1c. Figure 2.1d shows the actual observed photon count, which follows a

Poisson distribution with the expectation shown in Fig. 2.1c for each bin of the histogram.

Ideally, the decoding process will be able to use the calibration data to infer the information

present in Fig. 2.1b from the observed photon count in Fig. 2.1d, which is the only data available

for that pixel. When the photon count is very low, decoding the data accurately becomes more

and more challenging. Low photon counts may happen due to low laser power or fast acquisition

times. An illustration of such an acquisition can be seen in Fig. 2.2. It is clear that in a case

with such few observed photons the shape of the photon expectation is much less clear in the

photon count histogram. Given that in this work the aim is to decode signals with an average

photon per pixel count as low as 0.5, this must be taken into account.
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Figure 2.2: When the acquisition time is short the observed signal becomes much harder to
decode.

One recent approach for decoding single-photon LIDAR was proposed by Shin et al. in

[10, 11]. The main assumption for this method is that the impulse response at a given pixel is

the sum of a limited number of objects with different reflectivities and different depths. This is

a valid assumption, and it is able to model translucent objects and pixels that contain edges,

for example. A union-of-subspaces model is proposed to impose a restriction to the solution

space for each pixel, which mathematically models the assumption of limited responses in a

pixel. The problem is formulated as an optimization problem and is solved using a modified

version of the CoSaMP algorithm [12].

This method was used when the photon count was not as low as in some of the other

methods in the state-of-the-art. This is not surprising, as it does not exploit the potential spatial
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correlation between neighbouring pixels and therefore needs to observe a sufficient number of

photons in each pixel to produce good results. This method has also no obvious extension to

the case of multi-spectral LIDAR that allows correlation between different wavelengths.

Shin et al. proposed a different decoding technique in [13, 14] for decoding single-photon

LIDAR signals. It assumes a baseline noise that is ergodic for all the measured pixels and

that this baseline noise is known before the acquisition and decoding of the signal. Neither

of these assumptions is adequate for several applications. The intensity of the baseline signal

is pixel dependent, as will be shown in data presented in the next chapter. Furthermore, the

assumption that the baseline signal can be estimated during the calibration process does not

hold for any use case where the LIDAR system should be mobile.
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Figure 2.3: Real calibration data for a multi-spectral LIDAR system.

Despite these assumptions, this method is able to achieve good results for extremely low

photon counts. This is achieved by correlating the pixels spatially using total variation (TV)

regularisation during the decoding process. This method also assumes a known analytic form for

the impulse response, and uses this knowledge to model depth estimation as a convex estimation

problem. This assumption can be restrictive, as in the case for multi-spectral LIDAR the shape

of the impulse responses may vary significantly and modelling it as a log-concave function

does not adequately model impulse responses in different wavelengths. Figure 2.3 contains real

calibration data for different wavelengths of a multi-spectral LIDAR system. It is clear that

these impulse responses have no simple analytical form that accurately describes them, and the

authors have not disclosed the log-concave function used on their model in the paper.

The decoding method proposed in this work uses this method as a starting point, given its

efficiency in the case of low photon counts, and the proposed convex optimization problems can

be extended to the multi-spectral case in a meaningful way. Each of the challenged assumptions

is analysed and replaced by more flexible assumptions that lead to a more accurate and general

algorithm.
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In [15], Altmann et al. proposed a method for analysis of multispectral single-photon LI-

DAR data. In a Bayesian context, this algorithm propose simultaneous decoding and spectral

unmixing using the Markov chain Monte Carlo (MCMC) method. This method uses previous

knowledge about the spectral response of the materials in the scene to help in the decoding pro-

cess by estimating the abundances of each material in each pixel. In [16], convex optimization

is used along the known spectral responses of the materials in the scene aiming to minimize the

number of materials in each pixel while maintaining the data fidelity and total variation terms

low. In this case, previous knowledge about the spectral response of all the materials in the

scene is also necessary for the decoding to take place.

2.2 Convex Optimization

Many problems in modern signal processing and computer vision are solved by solving an

optimization problem. A cost function is proposed, and an optimization algorithm is used to

find its global minimum. Therefore, when dealing with problems in this way there are two main

parts to focus on: the design of the cost function, and the choice of algorithm used to find its

global minimum.

The design of the cost function depends on the problem at hand. More complex cost

functions may lead to better results but may be harder to optimize. One such case is in the

convexity of the proposed cost function. Non-convex cost functions are able to model a wider

range of problems, but they are significantly harder to optimize.

If the proposed cost function is convex, a class of optimization algorithms called convex

optimization algorithms can be used to find the minimum point of that function. The knowledge

that the cost function is convex can be used to build optimization algorithms that are faster

than general optimization algorithms based on properties of the cost function, e.g. a local

minimum must be a global minimum.

One algorithm used for convex optimization problems is the Alternating Direction Method

of Multipliers (ADMM) [17]. ADMM is a simple yet powerful convex optimization algorithm.

While the algorithm itself is not recent, it is still widely used due to its versatility and simplicity.

Assume we have a problem with the following form:

Minimize: f(x) + g(z)

Subject to: Ax+ Bz = c
(2.1)

Where f : Rn → R, g : Rm → R, x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. This

problem has the following augmented Lagrangian form:
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Lρ(x, z, y) = f(x) + g(z) + yT (Ax+ Bz − c) + (ρ/2)||Ax+ Bz − c||22 (2.2)

ADMM solves the problem defined in Eq. 2.1 iteratively using its augmented Lagrangian

form shown in Eq. 2.2. The iterations for the scaled form of the ADMM algorithm are:

xk+1 := arg min
x

(f(x) + (ρ/2))||Ax+ Bzk − c+ uk||22

zk+1 := arg min
z

(g(z) + (ρ/2))||Axk+1 + Bz − c+ uk||22

uk+1 :=uk + Axk+1 + Bzk+1 − c

(2.3)

The convergence of the ADMM algorithm is guaranteed given a few weak assumptions on

f and g. For more information on the derivations, proofs and other properties of the ADMM

the reader should refer to the review by Boyd et al. [17].

Figueiredo et al. have developed and algorithm named PIDAL which is used to denoise

images corrupted by Poissonian noise [18]. This algorithm is an extension of the scaled ADMM

algorithm to deal with a specific problem formulation involving a Poissonian negative log-

likelihood. The problem solved by the proposed PIDAL algorithm is very similar to the problems

proposed for single-photon LIDAR decoding described in [13, 14]. Moreover, Figueiredo et al.

describe in detail the process for adapting the scaled form of the ADMM algorithm into three

forms of the PIDAL algorithm. Following the same steps proposed in the paper, in Chapters 3

and 4 convex optimization algorithms will be proposed to solve the problems proposed to our

specific applications.

2.3 Compressive Sensing

Compressive sensing is the study of techniques that allow the recovery of signals from

underdetermined linear systems [19, 20]. These techniques allow for the acquisition of signals

with sub-Nyquist sampling in some cases, and are extremely useful in cases where it is desirable

to subsample the signal for convenience (i.e. reducing acquisition time) or to reduce costs, as

in the cases of magnetic resonance images [21–23] and radio astronomy [24,25].

These underdetermined systems are combined with prior knowledge about the nature of the

signal to be recovered in order to define a tractable minimization problem. This prior knowledge

is usually described by the sparsity of the signal in a known basis. Examples of such priors

include total variation (TV) [26–28], which is related to sparsity in the image gradient, and

sparsity in different wavelet bases [25,29].

Compressive sensing problems are generally formulated as an optimization problem based
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on the measurement model of the problem at hand. These problems can be written as Tikhonov

regularization problems [13,14,18,30], Morozov regularization problems [23], or Ivanov egular-

ization problems [24,25,29,31].

Consider a complex vector x ∈ CN , an orthogonal basis Ψ ∈ CN×N . Vextor x is said to

be K-sparse in base Ψ if Ψ†x has K or fewer non-zero elements, i.e. ||Ψ†x||0 ≤ K. Assume

that this vector x is probed by a linear measurement operator Φ ∈ CM×N with additive noise,

where M � N . In other words, y = Φx+ n, where y ∈ CN .

In some cases the sparsity promoting convex relaxation `1 norm is used instead of the `0

norm so that convex optimization algorithms may be used so find a solution to the problem.

The recovery of x from y in this case can be formulated in three ways:

Tikhonov formulation: x̂ = arg min
x

||y −Φx||22 + λ||Ψ†x||1

Morozov formulation: x̂ = arg min
x

||y −Φx||22, s.t. ||Ψ†x||0 < K

Ivanov formulation: arg min
x

||Ψ†x||1, s.t. ||y −Φx||2 < ε

(2.4)

In cases where the noise statistics are well known, the Ivanov formulation, also known as

constrained formulation, is generally preferred. In this work, however, the Tikhonov formula-

tion, also known as unconstrained formulation, was adopted since the Euclidean distance was

not an appropriate measure, as will be discussed in the next chapter. Once the appropriate

minimization problem has been proposed, an optimization algorithm can be chosen to find its

solution accordingly.



Chapter 3

Methodology: Single Wavelength

LIDAR Decoding

In this chapter, the proposed method for decoding single-photon LIDAR signals on one

wavelength is presented. The method is described along with its motivations, assumptions,

measurement model and the necessary mathematical derivations.

3.1 Main Considerations

In order to reduce overall acquisition times, it is interesting to analyse whether it is preferable

to reduce the number of measurements (number of pixels sensed for each wavelength) and

recover the signal using compressive sensing techniques, rather than reducing the per-pixel

acquisition time uniformly, as is commonly done [15, 16, 32]. In this chapter we consider a

single-photon LIDAR system with only one wavelength and reduce the number of sensed pixels.

A decoding pipeline is proposed that estimates the depth of a scene with an unknown baseline

signal (which is related to the level of ambient illumination) that is pixel-dependent.

This method builds on the algorithm proposed by Shin et al. in [13, 14]. As mentioned

in Chapter 2, the method proposed by Shin et al. makes assumptions that are not always

adequate and that should be addressed in order to improve the performance and versatility of

the algorithm. These three assumptions are:

1. Shin’s algorithm assumes ergodicity in the baseline signal, i.e. that the baseline signal has

the same intensity on all imaged pixels. This assumption is often incorrect, as will be seen

in real data results shown later in this chapter. Therefore, it is necessary to extend the

mathematical model to be able to model different baseline intensities at different pixels.

11
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2. The second incorrect assumption is that the baseline intensity can be measured during

calibration procedure and that value can be used on all subsequent measurements. Al-

though that may be the case in controlled static environments, the moment a LIDAR

system is moved this assumption becomes invalid. It is essential then to estimate the

baseline value from each measurement individually in applications such as the ones de-

scribed in [2, 3, 6, 7]. This assumption is replaced here by the assumption that we can

define a minimum distance between the LIDAR system and any imaged object.

3. The final assumption that is contested here is that we can formulate an analytic expression

that accurately describes the impulse response function. As was shown in Section 2.1,

this assumption does not generalise well to the multi-spectral case, and therefore is not

adequate for this work. This assumption is made in order to allow for depth calculation

using convex optimization algorithms and achieving fast calculation results by avoiding

direct likelihood calculations. The algorithm proposed in this chapter achieves fast calcu-

lation speeds for likelihoods by exploiting the low number of measured photons instead of

making approximations, which can be used directly with any impulse response obtained

during the calibration process regardless of its shape or whether it has a log-concave

analytical form.

The decoding is performed in three sequential steps: 1) baseline intensity estimation, 2)

response intensity estimation and 3) depth estimation. Each step is modelled as a Tikhonov

regularization problem. The order in which these steps are performed is important, as the result

of each step is necessary for the following step.

To account for the Poisson noise model, an extension of the PIDAL [18] algorithm is used

for background and target intensity estimation. Moreover, the regularization parameters, which

control the smoothness of the estimated background and target intensity profiles, can automat-

ically adjusted using approaches such as the one described in [33] or SURE based methods [34].

The final estimated depth profile is finally obtained by refining the depth estimated via

maximum likelihood estimation (conditioned on the previously estimated background and target

intensities) using convex optimization and compressive sensing signal recovery techniques.

3.2 Measurement Model

In this work we focus on decoding signals composed of extremely low photon per pixel (ppp)

count (∼0.5 ppp) measurements. Thus, Gaussian noise models are not well adapted to model

observation noise. As described in [14], the Poisson noise assumption, which is adopted here, is

much more relevant considering the discrete nature of the measurements (photon detections).
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The observation model can be described as follows. We consider a measurement matrix Fcalib

which is constructed during the calibration of the equipment. Each column of this matrix

contains the instrumental response associated with each admissible depth, and is obtained by

imaging a reference object with unitary reflectivity over a long acquisition time (100s here) to

reduce the impact of noise. For each scenario considered in Section 5.1, this matrix then is

scaled according to the per-pixel acquisition time considered.

F = Fcalib

(
acquisition time in seconds

100

)
(3.1)

Assuming the response in each pixel is based on the reflection of photons onto a single

surface assumed orthogonal to the incident beam, we can define for pixel p a vector xp =

[0 . . . ap . . . 0]T , where ap is the material response intensity (which is wavelength dependent),

and its position dp is related to the detected depth zp by

zp =
dpTbinc

2

where Tbin is the duration of each time bin used for creating the photon histogram and c is

the speed of light in the medium (e.g. water or air). For the experiments conducted in the

following sections, Tbin = 2 ps.

We then model the detected photon count yp,t for pixel p and time bin t as a random variable

drawn from a inhomogeneous (time dependent) Poisson distribution according to the following

model

yp ∼ Pr(Fxp + bp)

where Pr(λ) denotes a Poisson distribution with mean λ and yp = [yp,1, . . . , yp,Nbins ]
T . An

illustration of such model using a real calibration matrix F is displayed in Fig. 3.1. In this case,

bp = 0.1, ap = 1, dp = 125.

3.3 Decoding Method

The proposed decoding method is separated into three sequential steps: baseline estimation,

response intensity estimation and depth estimation. This method assumes we can separate the

data into two parts. The red dotted lines in Fig. 3.1 represent the depth/range below which

we assume that no object is present, and thus the signal corresponds solely to the baseline

response.
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Figure 3.1: Illustration of the measurement model for a given pixel. Top: example of true
response intensity per depth. Middle: expected photon count for each time bin, which depends
on a, b and d. Bottom: simulated photon count y using the Poisson model.

3.3.1 Baseline Intensity

Starting from the assumption that before a time Tb only baseline photons are detected, we

select for the baseline estimation only the bins with t ≤ Tb from the photon count histograms.

For these measurements, we can model the photon count yp,t for a given pixel p and bin t as a

random variable

yp,t ∼ Pr(bp)

where the baseline (or background) level bp is pixel dependent. This is equivalent to writing

the following probability mass function:

P (yp,t = k) =
bkpe
−bp

k!
.

Considering all the measurements {yp,t} in a single matrix Y ∈ NTb×P , the background levels

b = [b1 b2 . . . bP ]T could be estimated by minimizing the following negative log-likelihood

− log(P (Y|b)) =

P∑
p=1

[
− log(bp)

Tb∑
t=1

yp,t + Tbp +

Tb∑
t=1

log(yp,t!)

]
(3.2)
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but when the number of photons is extremely small, this pixel-wise approach yields poor results

(likelihood weakly informative). Moreover, Eq. (3.2) assumes that all the P pixels are observed.

Consider Sα a set of pixels randomly chosen out of the P pixels of the grid, where the

subsampling ratio 0 < α ≤ 1 corresponds to the proportion of spatial locations sampled. In

such a case, the data fidelity term (3.2) becomes

LY ,α(b) =
∑
p∈Sα

[− log(bp)σp + Tbbp], (3.3)

where σp =
∑Tb
t=1 yp,t. Given that (3.3) is convex, we can then formulate the following convex

optimization problem

b̂ = arg min
b

[LY ,α(b) + τpb(b) + iR+(b)] (3.4)

that aims to minimize the negative log-likelihood along with an appropriate regularization while

ensuring the positivity of the estimated background profiles b̂ (through an indicator function

iR+(·)).
Various convex regularizations pb(b) can be used, including total variation [26–28], Laplacian

spatial filters [35], or `1-based sparsity promoting regularizations (e.g. of wavelet coefficients

[25, 29, 36, 37]). The parameter τ > 0 controls the impact of the regularization on the final

solution. Using convex regularisers, the problem (3.4) can be solved for instance using the

PIDAL-TV or PIDAL-FA algorithms proposed in [18] or SPIRAL [38].

The hyperparameter τ may be automatically chosen by iteratively solving the minimization

problem and updating τ using τ = P/(pb(b̂) + 1) as was proposed in [33]. This increases the

necessary time to reach a solution to the problem, but avoids the manual choice of optimization

parameters.

3.3.2 Response Intensity

The method for estimating the response intensity per pixel is similar to the method used

for baseline estimation, but we need to take into account our baseline estimate b̂ for estimating

the response intensity a = [a1 a2 . . . aP ]T . Considering now the second part of our split data

of duration Ta, we need to consider simultaneously the baseline and the impulse response to

model the photon reception at pixel p and bin t as

yp,t ∼ Pr(apfp(t) + bp) (3.5)

where fp(t) is the column of F relative to the depth of the observed object in pixel p.

We can then define a new variable σ = [σ1 σ2 . . . σP ]T where σp =
∑Ta
t=1 yp,t. Since σp
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is a sum of independent Poisson random variables, σp follows also a Poisson distribution. We

assume here that the impulse response is never truncated, and therefore the columns of F have

the same `1-norm (same sum as the entries of F are positive), regardless of the observed depth.

From (3.5), we obtain

σp ∼ Pr(apσf + Tabp), where σf =
∑
t

fp(t). (3.6)

Following a similar procedure as in Section 3.3.1, the data fidelity term (with respect to a)

can be expressed as

LY ,α(a|b) =
∑
p∈Sα

[apσf − σp log(apσf + Tabp)], (3.7)

which, after replacing b by its estimates b̂, leads to the following convex optimization problem

â = arg min
a

[LY ,α(a|b̂) + τpa(a) + iR+(a)] (3.8)

since (3.7) is convex and by choosing an appropriate convex prior pa(a).

Note that this problem can not be directly solved by PIDAL since LY ,α(a|b̂) depends on b̂.

This can be solved by calculating the Moreau proximity operator of LY ,α(a|b̂) and changing

the corresponding step of the PIDAL algorithm. In Eq. (3.9), the symbol � represents the

Hadamard or element-wise product.

proxLY ,α/µ(ν) = arg min
a

[
LY ,α(a|b̂) +

µ

2
||a− ν||22

]
=

1

2

ν − σf
µ
− Tab̂

σf
+

√√√√(ν − σf
µ
− Tab̂

σf

)2

+
4σ

µ
+

4Tab̂� ν
σf

− 4Tab̂

µ

 (3.9)

3.3.3 Depth Estimation

Once the estimates b̂ and â have been calculated (by solving (3.4) and (3.8), respectively),

the last step is the depth estimation using the available data. For each pixel, the log-likelihood

is not convex with respect to dn unless approximations on the shape of the impulse response

are used. Here, the log-likelihood defined by

log(P (Y |b̂, â,d)) =
∑
p∈Sα

Tb+Ta∑
t=1

[
yp,t log(âpfdp(t) + b̂p)− (âpfdp(t) + b̂p)

]
+ C, (3.10)
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where C is a constant, is computed without any approximation.

By assuming that
∑P
t=1 fdp(t) does not depend on dp we can further simplify the log-

likelihood computation. Furthermore, computations can be sped up by taking advantage of the

fact that yp,t is extremely sparse when the photon count is low (the sum in log(P (Y |b̂, â,d))

reduces to a much smaller number of terms). Therefore, the calculations for the log-likelihood

are given by:

log(P (Y |b̂, â,d)) =
∑
p∈Sα

∑
t,yp,t 6=0

[yp,t log(âpfd(t) + b̂p)] + C (3.11)

Note that this formulation avoids using approximations (as in [13,14,39]) and directly uses

the calibration data from each LIDAR system, which will be more scalable when considering

multispectral LIDAR systems. For each observed pixel, the maximum likelihood estimator

of dp, denoted by dp,ML, is obtained by exhaustive search, i.e., by finding for each pixel the

column of F which maximizes log(P (Y |b̂, â,d)). Then, we can then solve a convex optimization

problem to estimate the complete depth vector d̂ as an inpainting problem. Here we use

a weighted Euclidean distance as data fidelity term along a convex regularization pd(d) to

build a minimization problem that aims to estimate d̂. Several techniques exist to solve such

problems [40]. The proposed minimization problem can be once solved by using the ADMM

algorithm once again, or other convex optimizations such as ISTA [41] and FISTA [28].

d̂ = arg min
d

[(dML −Mαd)TW(dML −Mαd) + τpd(d)] (3.12)

In (3.12), Mα is the selection matrix relative to Sα. Moreover, a diagonal weighting matrix

W is introduced to attribute higher confidence values to the pixels where more information is

available, i.e. where more photons have been observed. W is defined as:

W = diag(log(1 + σ))



Chapter 4

Methodology: Multi-spectral

LIDAR Decoding

An extension of the decoding algorithm presented in Chapter 3 to the case of multi-spectral

single-photon LIDAR signals is presented in this Chapter. The algorithm presented previously

could be applied to each wavelength of a given multi-spectral LIDAR signal individually, given

all calibration data is provided. In this chapter we aim to correlate information in different

wavelengths during the decoding process to push further the efficacy of the algorithm regarding

the observed number of photons per pixel.

4.1 Main Considerations

The algorithm presented in this chapter for single-photon multi-spectral decoding starts

from the same assumptions made in Section 3.1. The decoding algorithm still works in three

sequential steps: baseline estimation, reflectivity estimation, and depth estimation. The mea-

surement model is updated to cope with the new multi-spectral data and some associated

phenomena, and the appropriate modifications are made to the algorithm.

In many cases, the wavelengths imaged by the multi-spectral system are very close to one

another. In the case of the data used at the end of this chapter, for example, the wavelengths

of the used lasers were between 500nm and 820nm in steps of 10nm. Furthermore, the surface

responsible for the main response in each pixel is the same for all wavelengths. Thus, it is

sensible to assume there is a high correlation between the baseline images and reflectivity

images in different wavelengths.

It is important to note that in the single-band case, the accurate estimation of reflectivity a

18
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was important because it led to accurate depth estimation results. In the case of multi-spectral

signals, it is also the case but the way the reflectivity changes with the wavelength of the laser

can also be used to classify the imaged material in several applications. Although material

classification is outside the scope of this work, we acknowledge that the accurate estimation of

reflectivity images is of even more importance in the multi-spectral case.

4.2 Measurement Model

The modelling of the acquisition process for the multi-spectral LIDAR is very similar to the

single-spectral case, but it is important to address some differences. The first and most impor-

tant difference is that the number of baseline and reflectivity variables scales with the number

of wavelengths L that are imaged by the LIDAR system, while d does not. In mathematical

terms, B ∈ RN×L, A ∈ RN×L, and d ∈ RN .

Another important difference is that the impulse response is different for each of the con-

sidered wavelengths and is calibrated separately. That is to say that the calibration matrix F

considered in Section 3.2 is now a collection of L matrices F`, each of which containing the

impulse response for surfaces at different depths for each wavelength.

The final difference between the single-spectral and the multi-spectral cases considered here

is that there is a pixel and wavelength dependent vignetting effect that takes place during the

measurement, not unlike the phenomenon that happens with regular cameras, which takes place

due to physical limitations of the system (e.g. lenses) [15]. This vignetting effect is modelled

using a multiplicative factor rp,` at pixel p and wavelength ` that is applied to the impulse

response intensity. This vignetting factor is estimated during the calibration process and does

not change after that.

Given these considerations, the measurement model used here for the photon count his-

togram yp,` for pixel p and wavelength `, for the single-photon multi-spectral LIDAR system

can be written as in Equation (4.1), where xp,` is the one-hot vector xp,` = [0 ... ap,` ... 0]T .

yp,` ∼ Pr(rp,`F`xp,` + bp,`) (4.1)

4.3 Decoding Method

4.3.1 Baseline Intensity

Just as for the single-spectral case, the first step in decoding single-photon multi-spectral

LIDAR signals is to estimate the baseline. The baseline is now defined as B ∈ RP×L, where P

is the number of imaged pixels and L is the number of wavelengths that the LIDAR system is
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able to image. B is the concatenation [b1 ... b` ... bL] of the baselines at each wavelength. The

measurements for the time-steps where no response is observed yet can then be modelled as:

yp,t,` ∼ Pr(bp,`)

The same steps taken in Section 3.3.1 can then be taken with this new formulation. Assume

Σ ∈ RP×L such that σp,` =
∑Tb
t=1 yp,t,`. Consider also once again Sα,` a set of pixels randomly

chosen out of the P pixels of the grid for wavelength `, where the subsampling ratio 0 < α ≤ 1

corresponds to the proportion of spatial locations sampled. Note that the locations of the

sampled pixels are randomized for each wavelength `. The data fidelity term in this case can

be defined as the negative log-likelihood as follows:

LY ,α(B) =

L∑
`=1

∑
p∈Sα,`

[− log(bp,`)σp,` + Tbbp,`]. (4.2)

Next, it is necessary to determine what regularization will be used for building the mini-

mization problem. We propose here a regularization term that is the sum of the total variation

in each of the columns of B, corresponding to the sum of the total variations of each image

b`. For the sake of simplicity, this regularization will be called spectral total variation, or

STV. The Moreau proximity operator for the STV regularization function is equivalent to the

Moreau proximity operator for the TV regularization at each wavelength, which in turn must

be calculated iteratively.

STV(B) =

L∑
`=1

TV(b`) (4.3)

Additionally, a technique used in compressive sensing settings for multi-spectral radio as-

tronomy aiming to correlate different bands during signal reconstruction consists of using the

nuclear norm, i.e. the sum of absolute singular values, as additional regularization in the mini-

mization problem [24,42]. The nuclear norm is a convex regularization that promotes low-rank

matrices, which correlates the columns of B and helps the decoding of a given wavelength by

using information present in the other wavelengths. The nuclear norm of a matrix X is here

represented by ||X||∗ = ||Σ||1,1 =
∑
i |σi| where X = UΣVT is the SVD decomposition of X.

The Moreau proximity operator for the nuclear norm is a soft thresholding operation on the

singular values of the matrix. Therefore, this regularization requires the computation of an

SVD decomposition at each iteration, which may be costly depending on the dimensions of the

considered data and the computing power available.

Putting all these elements together, the minimization problem can then be written as:
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B̂ = arg min
B

[LY ,α(B) + τ1STV(B) + τ2||B||∗ + iR+(B)] (4.4)

Note that since the problem now includes two hyperparameters, the method mentioned in

Section 3.3.1 for automatic parameter tuning can no longer be used, and thus τ1 and τ2 must

be tuned manually.

Let us define σf = [σf,1...σf,L], where σf,` is the sum of expected number of observed

photons for wavelength `, i.e. σf,` =
∑Ta
t=1 fd,`(t), which depends only on ` and not on d

as long as the impulse responses are not truncated, which is assumed. Following the same

method described in [18] I proposed an algorithm able to solve (4.4). The resulting algorithm

is Algorithm 1 described below.

4.3.2 Response Intensity

Once the baseline estimation B̂ has been calculated, the multi-spectral reflectivity estimation

can be performed. Using the complete measurement model described by Equation (4.1) we can

once again calculate the data fidelity term as a function of A ∈ RP×L using the negative

log-likelihood of our measurement model. The data fidelity term is then given by

LY ,α(A|B̂) =

L∑
`=1

∑
p∈Sα,`

[rp,`σfap,` + Tabp,` − σp,` log(rp,`σfap,` + Tabp,`)] (4.5)

where Ta is the total number of time-steps in the considered photon count histogram, Sα is the

set of measured pixels, and σp,` =
∑Ta
t=1 yp,t,`.

Similarly to the case of multi-spectral baseline estimation, the STV and nuclear norm reg-

ularization terms are used, along with the positivity enforcing indicator function, to build the

minimization problem that yields the estimate Â, defined as

Â = arg min
A

[LY ,α(A|B̂) + τ1STV(A) + τ2||A||∗ + iR+(A)], (4.6)

where B has been replaced by B̂.

To solve this minimization problem using the same strategy that was used in the previous

chapter it is necessary to calculate the Moreau proximity operator of the proposed data fidelity
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Algorithm 1: Adapted PIDAL algorithm to estimate B̂
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term. Following the definition of the Moreau proximity operator

proxLY ,α/µ(N) = arg min
A

[
LY ,α(A|B̂) +

µ

2
||A−N||22,2

]
=

1

2

N− σfR

µ
− TaB̂

σfR
+

√√√√(N− σfR

µ
− TaB̂

σfR

)2

+
4Σ

µ
+

4TaB̂�N

σfR
− 4TaB̂

µ

 (4.7)

where � represents the element-wise product and ·
· represents element-wise division.

Following once again the method described in [18] I proposed an algorithm able to solve

(4.6). The resulting algorithm is Algorithm 2 described below. Since the SVD calculations

used for calculating the Moreau proxmity operator of the nuclear norm can be very costly, one

strategy to speed up the convergence of the algorithm is to first run the algorithm as if the

nuclear norm was not included in the minimization problem, which will result in reconstruction

using only the STV regularization. Upon convergence, the solution can be used as initial guess

for the algorithm, which is then run in its complete form. This can be seen as using a simpler

algorithm to approach the solution and provide a smart initial guess for the full algorithm.

4.3.3 Depth Estimation

The final step of the decoding process is once again the depth estimation. The log-likelihood

for the multi-spectral model in use here with respect to the depth d is given by Eq. (4.8). Note

that unlike the baseline and the reflectivity estimation, the depth estimation does not scale with

the number of wavelengths considered in the problem. Once again the calculations can be sped

up by reducing the summation over t only to the terms where yp,t,` 6= 0. This leads to much

faster likelihood calculations when few photons are observed since yp,t,` becomes very sparse.

This is ideal since that is exactly the case that this work focuses on. The joint log-likelihood

then becomes

log(P (Y |B̂, Â,d)) =

L∑
`=1

∑
p∈Sα,`

∑
t,yp,t,` 6=0

[yp,t,` log(âp,`fd(t) + b̂p,`)] + C. (4.8)

We can then define a sampling matrix Mα as a selection matrix for all the pixels that have

been observed using at least one wavelength. We also define the weights matrix W as a function

of the number of photons that have been observed at pixel p on all wavelengths.

W = diag(log(1 + σ)), where σ =

L∑
`=1

Ta∑
t

yp,t,` (4.9)

The minimization problem can then be built similarly to the single-spectral case using a
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Algorithm 2: Adapted PIDAL algorithm to estimate Â
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weighted Euclidean distance as data fidelity term and a convex regularization term pdd. Once

this minimization problem is solved the decoding of the single-photon multi-spectral LIDAR

signal is complete.

d̂ = arg min
d

[(dML −Mαd)TW(dML −Mαd) + τTV (d) + iR+(d)] (4.10)

4.4 Comparison Against State-of-the-art

The decoding method proposed in the previous sections can be seen as an improvement on

the method proposed in [13,14]. The main differences are:

1. The method proposed here has been extended to decode single-photon multi-spectral

LIDAR signals, as opposed to only single-spectral ones.

2. The baseline model has been extended to estimate a baseline value for each pixel, which

will be shown to be important in Chapter 5.

3. The algorithm presented here infers the baseline intensity from the measured data instead

of doing so during calibration, which enables mobile LIDAR systems.

4. The present method uses directly calibration data for depth estimation, instead of propos-

ing approximations in the shape of the impulse response.

5. The weighting matrix in the data fidelity term based on the photon count that has been

proposed in this work has not been proposed by any other method in the state-of-the-art.

The proposed method also differs from the ones proposed in [15,16] mainly in the fact that

it is able to decode the signal without any previous knowledge of the spectral responses of the

materials in the scene. The present method also uses the nuclear norm to correlate the different

bands during the decoding process to improve photon efficiency by exploiting the redundancy

between the baseline and reflectivity images in different bands.
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Results

5.1 Single-spectral Results

A set of test images of size 200×200 pixels was generated from an RGB image and its depth

map with different amounts of measured photons. A scaled version of the R channel was used

as response intensity a, a scaled version of channel B was used as baseline response b, and a

scaled version of the depth map was used as the depth ground truth d to simulate a realistic

scene where baseline, reflectivity and depth are correlated. The expectation of the observed

number of photons at each pixel and within each time bin was calculated and a random sample

was drawn from a Poisson distribution accordingly. Two test images were used: one (office) is

a real photograph and its estimated depth map [43], and the other (cube) is a 3D rendering of

a simulated scene. Total variation regularization was used for the optimization problems given

its proven success in the recovery and denoising of natural images.

The signals were simulated with several different numbers of photons per pixel and sub-

sampling ratios, as can be seen in Table 5.1. The values in the table are for response intensity

photons, and an equal amount of baseline photons was present in each simulation, thus only

half the photons contained depth information. The values were chosen to maintain constant

average per-pixel photon counts for each group of scenes. This was done to address the question

proposed earlier regarding generalization to multispectral LIDAR.

The results obtained for each of the test images in each of the two sets can be seen in Figs. 5.1

and 5.2. Each of the lines refers to the cases in which the average photon count considering

all the pixels in the image is constant. For these test cases, the measurements were divided in

baseline and response intensity halves using Tb = 1200 and Ta = 2500. The numerical values

for the SNR of each result can be found in Tables 5.2 and 5.3.

26
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Table 5.1: Approximate photon per pixel count and subsampling ratios

ppp (sampled pixels) ααα ppp (average)

0.5, 1, 2, 4, 8 1, 1/2, 1/4, 1/8, 1/16 0.5

1, 2, 4, 8, 16 1, 1/2, 1/4, 1/8, 1/16 1

10, 20, 40, 80, 160 1, 1/2, 1/4, 1/8, 1/16 10

100, 200, 400, 800, 1600 1, 1/2, 1/4, 1/8, 1/16 100

1000, 2000, 4000, 8000, 16000 1, 1/2, 1/4, 1/8, 1/16 1000

(a) 0.5ppp, α =
1

(b) 1ppp, α =
1/2

(c) 2ppp, α =
1/4

(d) 4ppp, α =
1/8

(e) 8ppp, α =
1/16

(f) Ground truth

(g) 0.5ppp, α =
1

(h) 1ppp, α =
1/2

(i) 2ppp, α =
1/4

(j) 4ppp, α =
1/8

(k) 8ppp, α =
1/16

(l) Ground truth

Figure 5.1: Final depth estimation results obtained by our method and the ground truth depth
for both images with 0.5 ppp on average for all cases.

The results displayed in Figs. 5.1 and 5.2 were obtained by manually tuning the optimization

parameters instead of using the method described in [33] to achieve faster optimizations. The

SNRs obtained by manually tuning the optimization parameters were also better than the ones

obtained by automatic parameter tuning. The method proposed in [33] is most useful when no

previous information is known about the measured images, which was not the case in our tests.

Observing the 0.5 ppp and 1 ppp lines on plots 5.2a and 5.2b we can see that when the

acquisition time is very low, and therefore the photon count is low, it is preferable to acquire

more data on a random selection of pixels than to acquire a uniform amount of data for all

pixels. This is not the case when a large amount of photons is observed, in which case it seems

better to sample all the pixels. This can also be clearly seen in the images displayed in Fig. 5.1.

These images show the estimated depths for the cases where the averagenumber of photons per

pixel over all pixels is 0.5 ppp.



Chapter 5: Results 28

10 0 10 1

1/

10

15

20

25

30

35

40

45

50

D
e
p
th

 S
N

R
0.5 ppp

1 ppp

10 ppp

100 ppp

1000 ppp

(a) Results for office image

10 0 10 1

1/

10

20

30

40

50

60

D
e
p
th

 S
N

R

0.5 ppp

1ppp

10ppp

100ppp

1000ppp

(b) Results for cube image

Figure 5.2: Accuracy of the results considering different photon counts and subsampling ratios
for both test images.

We can clearly see that the quality of the results improves as we sample less pixels with

more accuracy. We also observe that the lines for 100 ppp and 1000 ppp are very close for

both test images, which indicates that for large amounts of photons the quality of the depth

estimation is no longer strongly affected by the amount of measured photons. These conclusions

are corroborated by the locations of the maximum of each line in Tables 5.2 and 5.3, marked

in bold. Finally, we can also conclude that since the lines converge when the subsampling ratio

grows, there is a limit to the maximum subsampling ratio in order to enable an adequate depth

estimation.

While these tests show the performance of the algorithm under different conditions, it is

important to note that they were executed using data generated using the exact measurement

model that was proposed. It is important then to verify the accuracy of the proposed measure-

ment model by decoding real single-photon LIDAR data.



29 5.1 Single-spectral Results

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Weak baseline: b̂

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Strong baseline: b̂
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(c) Weak baseline: â
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(f) Strong baseline: d̂

Figure 5.3: Baseline, reflectivity and depth results obtained from applying the proposed algo-
rithm on real LIDAR data. The images on the left are from an acquisition with very weak
baseline signal, while the one on the right was under direct sunlight, and therefore had a strong
baseline signal.
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Table 5.2: SNRs for the depth estimation results using the office image

Mean ppp ααα = 1 ααα = 1/2 ααα = 1/4 ααα = 1/8 ααα = 1/16

0.5 9.2417 12.468 17.3194 24.3011 26.6858

1 10.7236 15.2998 21.3991 28.1975 27.5057

10 22.7464 30.3103 33.241 32.79 27.9123

100 37.1936 38.4678 37.5441 33.1134 27.9258

1000 39.658 40.3907 37.2302 32.84 27.9777

Table 5.3: SNRs for the depth estimation results using the cube image

Mean ppp ααα = 1 ααα = 1/2 ααα = 1/4 ααα = 1/8 ααα = 1/16

0.5 7.7425 10.2014 15.1753 21.3681 23.3367

1 9.0366 13.2075 20.0279 24.8601 25.015

10 21.5767 32.4258 32.659 28.1395 25.8196

100 55.9804 40.0808 32.6872 28.3709 25.6323

1000 55.9827 40.069 32.6852 28.2385 25.6

Figure 5.3 shows the results from using this decoding method on two different acquisitions

of the setup displayed in Fig. 5.4. The triangles that can be seen in Figs. 5.3c, 5.3d and 5.4

are markers used for scale calibration. The first one was acquired when ambient illumination

was very weak, and therefore the majority of the observed photons were reflections from the

emitted laser pulse. The second one was acquired with the imaged object under direct sunlight,

and therefore there is a strong baseline signal present. This being the case, there is no way of

calculating the SNR for these results since there is no ground truth available for comparison.

Nevertheless, several conclusions can be drawn from the qualitative analysis of these results.

The first thing to note is that the algorithm has been able to infer the baseline intensity,

reflectivity and depth for all the pixels in the image. This verifies the assumptions that were

made, the measurement model, and the proposed decoding algorithm.

Another important observation is that, not surprisingly, the presence of a strong baseline

signal reduces the quality of the reconstruction. Ideally all measured photons would come

from the emitted laser pulse, and the baseline signal is, in this case, noise that complicates the

extraction of information from the measurements.

Finally, here it can clearly be seen in Fig. 5.3b that the assumption made in [13,14] that the

baseline intensity is equal for all pixels in the image is incorrect. In this case, the baseline signal

is significantly stronger on the parts of the image where the object was under direct sunlight

illumination. This therefore justifies the more precise pixel-wise modelling of baseline intensity
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Figure 5.4: Image of the setup used for acquiring single-spectral LIDAR images. The imaged
object provides a realistic shape for evaluating the decoding algorithm.

that was proposed in this chapter.

5.2 Multi-spectral Results

To test the multi-spectral extension of the decoding method proposed in Chapter 4 real

and simulated LIDAR data was used. To begin with, the scene shown in Fig. 5.5 was used.

This decoding shows that the decoding method is able do deal with a variety of materials with

different spectral responses. It also shows that the proposed measurement model is accurate,

including the wavelength dependent vignetting effect. This scene was imaged using 190 × 190

pixels over 33 laser wavelengths, from 500nm to 820nm in steps of 10nm.

Some results from the decoding of this scene can be seen in Fig.5.6, which contains the

estimated reflectivity of the scene for five of the measured wavelengths. Figure 5.6f shows the

depth estimation results for this acquisition. Although there is no ground truth for this data
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since it is a real acquisition, the qualitative analysis of the results indicate that the proposed

method succeeded in accurately decoding the LIDAR signal.

Figure 5.5: Image of the setup used for acquiring multi-spectral LIDAR images. The imaged
object provides realistic shape and varied spectral responses for evaluating the decoding algo-
rithm.

To quantitatively evaluate the proposed method, a set of twenty scenes were simulated using

as ground truth the reflectivity and depth estimations from the decoding of the real scene to

ensure the simulations were as realistic as possible. These scenes also contained 190×190 pixels

(P = 36100) and thirty three wavelengths (L = 33). The impulse responses were assumed to

come from a single imaged surface at each pixel with the depth and reflectivity as given by

the ground truth signals. The acquisition times were scaled so that the expected mean photon

counts per band in each simulated signal assumed the values described in Table 5.4 to cover a

range of situations and evaluate once again the effects of compressive sampling of the pixels.

The results from these simulation can be seen in Tables 5.5 and 5.6, as well as in the plots

in Figure 5.7. It is interesting to note from these plot that, unlike in the single-spectral case,

observing fewer pixels for longer periods of time does not seem to be a good strategy in the
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Table 5.4: Approximate photon per pixel per band count and subsampling ratios for multi-
spectral simulations

ppp (sampled pixels) ααα ppp (average)

0.5, 1, 2, 4, 8 1, 1/2, 1/4, 1/8, 1/16 0.5

1, 2, 4, 8, 16 1, 1/2, 1/4, 1/8, 1/16 1

10, 20, 40, 80, 160 1, 1/2, 1/4, 1/8, 1/16 10

100, 200, 400, 800, 1600 1, 1/2, 1/4, 1/8, 1/16 100

Table 5.5: SNRs for the reflectivity estimation results

Mean ppp ααα = 1 ααα = 1/2 ααα = 1/4 ααα = 1/8 ααα = 1/16

0.5 14.1998 14.1922 14.1642 13.9935 12.9723

1 16.5688 16.7516 16.631 16.1428 14.7065

10 20.1400 21.8927 21.6714 19.46 16.3172

100 25.0042 25.8788 23.5377 20.1337 16.5169

Table 5.6: SNRs for the depth estimation results

Mean ppp ααα = 1 ααα = 1/2 ααα = 1/4 ααα = 1/8 ααα = 1/16

0.5 33.4773 32.416 30.0932 27.6252 27.2448

1 47.3494 39.0025 37.5994 32.9088 30.5927

10 62.0842 62.1623 40.9781 41.7838 38.7348

100 67.6337 67.5869 45.8926 45.4588 41.0779
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(a) Reflectivity, ` = 1 (500nm)
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(b) Reflectivity, ` = 9 (580nm)
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(c) Reflectivity, ` = 17 (660nm)
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(d) Reflectivity, ` = 25 (740nm)
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(e) Reflectivity, ` = 33 (820nm)
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Figure 5.6: Decoding results for real single-photon multi-spectral LIDAR data.

multi-spectral case for either reflectivity or depth estimation, except for a few cases where a

subsampling rate of α = 1/2 yields the best reflectivity results.

The resulting depth estimations for each of the test cases can be seen in Fig. 5.8. As expected,

we can observe that more photons yield better depth estimations. Also, in accordance to the

SNRs previously mentioned, these results indicate that lower values of α lead to worse depth

estimations. It is also interesting to note that the errors in these depth estimations are very

localised, and these errors seem to increase in number and not in magnitude as the results

degrade. This is likely to occur due to noise photons that have been observed far from the peak

of the impulse response. In a case where very few photons are measured, a single noise photon

has a strong weight and is able do disturb the accuracy of the depth estimation. These results

could be improved with denoising techniques, but the scope of this work is to obtain the best

decoding results using state-of-the-art LIDAR modelling and convex optimization methods, and

the comparison of denoising techniques is a well studied area.

Another way to evaluate the results that may give more information than simply calculating

the SNRs for each case is to analyse the cumulative probability function of the absolute error

in each reflectivity and depth estimation. This allows us to see the distribution of the error

in the performed estimations. The cumulative probability functions from the absolute errors
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Figure 5.7: SNRs in reflectivity and depth estimation for each of the test cases.

for reflectivity estimation can be seen in Fig.5.9, and for depth estimation in Fig. 5.10. The

cumulative error distribution for the reflectivity estimation follows what is expected, which is

a smooth curve that approaches a unitary step function as the results improve. On the other

hand, the cumulative error distribution for depth estimation shows strange behaviours in the

curves, which indicates that few large errors seem to be having a strong impact in the SNR

calculations.
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(a) 0.5ppp, α = 1
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(b) 1ppp, α = 1
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(c) 10ppp, α = 1
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(d) 100ppp, α = 1
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(e) 0.5ppp, α = 1/2
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(f) 1ppp, α = 1/2
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(g) 10ppp, α = 1/2
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(h) 100ppp, α = 1/2
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(i) 0.5ppp, α = 1/4
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(j) 1ppp, α = 1/4
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(k) 10ppp, α = 1/4
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(l) 100ppp, α = 1/4
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(m) 0.5ppp, α = 1/8
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(n) 1ppp, α = 1/8
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(o) 10ppp, α = 1/8

50 100 150

20

40

60

80

100

120

140

160

180 790

800

810

820

830

840

850

860

870

(p) 100ppp, α = 1/8
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(q) 0.5ppp, α = 1/16
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(r) 1ppp, α = 1/16
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(s) 10ppp, α = 1/16
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Figure 5.8: Depth estimation for each test case.
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Figure 5.9: Cumulative probability function for the absolute error in reflectivity estimation for
each of the test cases.
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Figure 5.10: Cumulative probability function for the absolute error in depth estimation for each
of the test cases.
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Conclusion

6.1 Main Considerations

In the previous chapters a decoding method for single-spectral and multi-spectral single-

photon LIDAR signals was proposed based on the state-of-the-art single-photon LIDAR decod-

ing algorithms, and using compressive sensing and convex optimization ideas. In both cases,

the method was proven to be able to successfully decode real LIDAR signals, validating the

proposed measurement models and decoding methods.

The usage of compressive sensing to mitigate the effects of the lack of photons in the LIDAR

signals was tested. The results suggest that in the single-spectral case it is interesting to sample

fewer pixels for longer periods of time using a scanning LIDAR system in order to acquire higher

quality data in those pixels, and infer the rest of the values using compressive sensing methods.

In the multi-spectral case, the results indicate that this strategy is not advisable as it seems

to reduce the decoding quality, and it is better to use a uniform scanning of the pixels in the

image.

Nevertheless, the proposed decoding method improves on the state-of-the-art in different

ways. It provides a more complete modelling of the baseline noise, it enables baseline estimation

from the measurement itself instead of during calibration, it uses directly the impulse response

shape from calibration to calculate the depth likelihoods at each pixel. Furthermore, the nuclear

norm was added in the multi-spectral case to correlate the different bands, and a novel weighting

of the data fidelity term based on the number of observed photons was used for depth estimation.
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6.2 Future Work

The choice of parameters for the proposed optimization problems remains a challenge, es-

pecially for the multispectral cases where τ1 and τ2 must be tuned simultaneously. I would be

interesting to explore techniques for tuning these optimization parameters, perhaps based on

the physics of the observation model.

It would be interesting to explore the usage of other regularizations that correlate the

different wavelengths during the decoding process. While the nuclear norm regularization is

useful, it is expensive to calculate and other priors such as joint sparsity models could be

explored in this context.

It is also important to evaluate the reflectivity results from the multi-spectral decoding

algorithm with existing spectral unmixing methods for material classification to ensure that

the method is precise enough for these applications in low photon count settings.

Another possible improvement to the contributions in this work would be to find a way to

move the minimization problem to a constrained formulation. This is challenging since the data

fidelity term here uses the Poissonian negative log-likelihood instead of the Euclidean distance,

but finding a way of constraining the solution space could lead to improvements in the quality

of the results.

Finally, it would be interesting to explore the usage of other convex optimization algorithms

that converge faster, demand less computational power or are able to run in a distributed

manner. Such algorithms already exist, such as the Primal-Dual family of optimization algo-

rithms [44].
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